
Sec. 13.3: 

Arclength and Curvature



What We Will Go Over In Section 13.3

1. Arc Length

2. Different Parametrizations

3. Parametrizing With Respect to Arc Length

4. Curvature

5. The Normal and Binormal Vectors

6. The Normal and Osculating Planes



1. Arc Length

In Calc. II,  arc length of a curve was defined as the limit of 

the total length of approximating polygons. Story…
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1) the curve is given 

parametrically, 

2)  𝑎 < 𝑏 , and

3) the curve is traversed exactly 

once from  𝑡 = 𝑎 to  𝑡 = 𝑏 ,  

then its arclength is …

If…



1. Arc Length

In Calc. III,  the  arc length is still the limit of the total length 

of approximating polygons. The only difference is that the 

curve is a space curve.

1) the curve is given 

parametrically, 

2)  𝑎 < 𝑏 , and

3) the curve is traversed exactly 

once from  𝑡 = 𝑎 to  𝑡 = 𝑏 ,  

then its arclength is …
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1. Arc Length

Ex 1:  Find the length of the arc of the circular helix with vector equation  

Ԧ𝑟 𝑡 = < cos 𝑡 , sin 𝑡 , 𝑡 > from the point (1, 0, 0)  to the point  (1, 0, 2𝜋).   



2. Different Parametrizations

Note:  Arc length does not depend on the parametrization of 

the curve.

3 parametrizations of the same curve from example 1:

Ԧ𝑟 𝑡 = < cos 𝑡 , sin 𝑡 , 𝑡 > 0 ≤ 𝑡 ≤ 2𝜋

Ԧ𝑟 𝑢 = < cos 2𝑢 , sin 2𝑢 , 2𝑢 > 0 ≤ 𝑢 ≤ 𝜋

Ԧ𝑟 𝑠 = < cos (ln 𝑠) , sin (ln 𝑠) , ln 𝑠 > 1 ≤ 𝑠 ≤ 𝑒2𝜋



Note:  Arc length does not depend on the parametrization of 

the curve.

If…

1)                                                                       is the arc of a 

space curve and

2)                  is a monotonic function on    

Ԧ𝑟 𝑡 = < 𝑥 𝑡 , 𝑦 𝑡 , 𝑧 𝑡 >, 𝑎 ≤ 𝑡 ≤ 𝑏

𝑡 = 𝑓(𝑠)

𝑓−1(𝑎) ≤ 𝑠 ≤ 𝑓−1(𝑏)

Then…

3)                                                                                                                           

is a different parametrization of the 

arc of the same space curve and using the arc length formula 

will give you the same value for the arc length regardless of 

which parametrization you use.

Ԧ𝑟 𝑠 = < 𝑥 𝑓(𝑠) , 𝑦 𝑓(𝑠) , 𝑧 𝑓(𝑠) >,
𝑓−1(𝑎) ≤ 𝑠 ≤ 𝑓−1(𝑏)

2. Different Parametrizations



3. Parametrizing With Respect to Arc Length

Normally we think of the parameter  t  as time. If an object is 

in motion along a space curve  Ԧ𝑟(𝑡) ,  plugging in a value for  t  

gives you the location of the object at that time. 

Sometimes, we would like the input variable to be arc length 

(we will use  s  for this).  If an object is in motion along a 

space curve  Ԧ𝑟(𝑠) ,  plugging in a value for  s  gives you the 

location of the object after it has traveled a distance  s  along 

the curve from the starting point of the motion.



3. Parametrizing With Respect to Arc Length

The Arc Length Function

Let                                                                       represent the 

arc of a space curve. The arclength function is the function  

𝑠(𝑡) whose input is time and whose output is the length of the 

arc the object traveled from time  a  to time  t.  

Ԧ𝑟 𝑡 = < 𝑥 𝑡 , 𝑦 𝑡 , 𝑧 𝑡 >, 𝑎 ≤ 𝑡 ≤ 𝑏
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3. Parametrizing With Respect to Arc Length

Parametrizing With Respect to Arc Length

Let                                                                       represent the 

arc of a space curve. Let  𝑠(𝑡) be the arclength function. 

Invert  s  (which means solve for  t ) and plug in to get  Ԧ𝑟 in 

terms of  s. This is the parametrization of  Ԧ𝑟 with respect to 

arc length  Ԧ𝑟(s).  

Ԧ𝑟 𝑡 = < 𝑥 𝑡 , 𝑦 𝑡 , 𝑧 𝑡 >, 𝑎 ≤ 𝑡 ≤ 𝑏



3. Parametrizing With Respect to Arc Length

Ex 2:  Reparametrize the helix                                                with respect to arc length measured 

from the point (1,0,0) in the direction of increasing  t.

Ԧ𝑟 𝑡 = < cos 𝑡 , sin 𝑡 , 𝑡 >



4. Curvature

Given a point on a space curve, its curvature  𝜅 at that point is a positive number that tells you 

how to what extent the curve is curving at that point. 

Story…

Draw some example on the board…



4. Curvature

Curvature Idea:

• It’s like the rate of change of the tangent vector

• But there are issues…

1. Tangent vectors have differing lengths and will 

contribute to the rate of change. So instead of using  

Ԧ𝑟′(𝑡) ,  we’ll use the unit tangent vector  𝑇 𝑡 =
Ԧ𝑟′(𝑡)

Ԧ𝑟′(𝑡)
.



4. Curvature

Curvature Idea:

• It’s like the rate of change of the tangent vector

• But there are issues…

2.  The derivative of the unit tangent vector depends on the 

parametrization used, so we will standardize it by using the 

parametrization with respect to arc length  𝑇 𝑠 .



4. Curvature

Curvature Idea:

• It’s like the rate of change of the tangent vector

• But there are issues…

3.  Since curvature is a positive number, after we take the 

derivative, we will take its magnitude.



4. Curvature

Definition of Curvature:

𝜅 =
𝑑𝑇

𝑑𝑠

This is the curvature function. To get the 

curvature at a specific point, plug in a 

number for  s

Other formulas for curvature…

𝜅(𝑡) =
𝑇′(𝑡)

Ԧ𝑟′(𝑡)
𝜅(𝑡) =

Ԧ𝑟′ 𝑡 × Ԧ𝑟′′ 𝑡

Ԧ𝑟′(𝑡) 3

𝜅(𝑥) =
𝑓′′(𝑥)

1 + 𝑓′(𝑥) 2 3/2𝑟′ 𝑥 =< 𝑥, 𝑓 𝑥 >If →



4. Curvature

Ex 3:  Show that the curvature of a circle of radius  a  is  1/𝑎



4. Curvature

Ex 4:  Find the curvature of the twisted cubic  Ԧ𝑟 𝑡 =< 𝑡, 𝑡2, 𝑡3 > at a general point and at 

(0,0,0).



4. Curvature

Ex 5:  Find the curvature of the parabola  𝑦 = 𝑥2 at the points  (0,0) , (1,1) , and (2,4). 



4. Curvature

Ex 5:  Find the curvature of the parabola  𝑦 = 𝑥2 at the points  

(0,0) , (1,1) , and (2,4). 



5. The Normal and Binormal Vectors

The Unit Normal Vector:  

Given a space curve  Ԧ𝑟(𝑡) and a point  P , consider the unit 

tangent vector   𝑇(𝑡) at that point. There are many vectors 

perpendicular to  𝑇(𝑡).  One of them is called the unit normal 

vector

𝑁 𝑡 ≡
𝑇′(𝑡)

𝑇′(𝑡)

We can think of the unit normal vector as indicating the 

direction in which the curve is turning at each point. Pic?



5. The Normal and Binormal Vectors

The Binormal vector:  

Given a space curve  Ԧ𝑟(𝑡) and a point  P , consider the unit 

tangent vector   𝑇(𝑡) at that point. There are many vectors 

perpendicular to  𝑇(𝑡).  Another is called the binormal vector

𝐵 𝑡 ≡ 𝑇(𝑡) × 𝑁(𝑡)



5. The Normal and Binormal Vectors
Ex 6:  

Find the unit normal and binormal vectors for the circular helix  Ԧ𝑟 𝑡 = < cos 𝑡 , sin 𝑡 , 𝑡 >



6. The Normal and Osculating Planes
Def:  

1) The normal plane to  Ԧ𝑟(𝑡) at point  P  is the plane that 

passes through  P  and contains the unit normal and 

binormal vectors  𝑁 𝑡 and  𝐵 𝑡 . So its normal vector is 

in the direction of  Ԧ𝑟′(𝑡) or  𝑇 𝑡 .
2) The osculating plane to  Ԧ𝑟(𝑡) at point  P  is the plane that 

passes through  P  and contains the unit tangent and unit 

normal vectors  𝑇 𝑡 and  𝑁 𝑡 . So its normal vector is in 

the direction of  𝐵 𝑡 .



6. The Normal and Osculating Planes
Def:  

3)  The osculating circle to  Ԧ𝑟(𝑡) at point  P  is the circle that

a) lies in the osculating plane

b) has the same tangent to  C  at  P

c) lies on the concave side of  C (towards which  𝑁 𝑡
points) 

d) and has radius  𝜌 =
1

𝜅
where  𝜅 is the curvature of  C  

at  P  



6. The Normal and Osculating Planes

Ex 7:  Find the equation of the normal plane and osculating plane of the helix from example 6 at 

the point  𝑃(0, 1,
𝜋

2
)



6. The Normal and Osculating Planes
Ex 8:  Find and graph the osculating circle of the parabola  𝑦 = 𝑥2 at the origin.



6. The Normal and Osculating Planes

Ex 8:  Find and graph the osculating circle of the parabola  

𝑦 = 𝑥2 at the origin.


